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Finite-temperature large acoustic polaron dynamics in quasi-one-dimensional molecular crystals
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We report the results of theoretical examinations of large polaron motion in one-dimensional~1D! molecular
crystals under the influence of thermal fluctuations of the host lattice and constant electric field. Such a
situation may arise in biological macromolecules such as ana helix where charge~electron! transfer may be
achieved by a polaron~soliton! mechanism. In that case, the electric field represents the effective endogenous
electric field which is always present in realistic conditions. We derive and solve the Fokker-Planck equation
for the distribution function of the soliton’s center-of-mass position. It is shown that the soliton effectively
exhibits a random walk. Moreover, in order to examine statistical properties of the soliton wave function, we
calculate the mean value of the soliton probability density:^ub(x,t)u2& and we find that, for sufficiently large
times, thermal fluctuations destruct the soliton, which transforms into the Gaussian packet. These results were
used in order to estimate the relevance of the soliton model of charge transfer in polypeptide chains.

DOI: 10.1103/PhysRevE.65.021911 PACS number~s!: 87.15.2v, 05.40.2a, 71.38.2k
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There has been an extensive interest@1–14# in the study of
large polaron ~soliton! properties in the quasi-one
dimensional molecular chains in recent years. It arises du
the assumed key role of polarons and solitons in lo
distance charge~electron, etc.! and intramolecular vibrationa
energy~amide-I quanta! transfer along the conducting poly
mers and organic salts, and biological macromolecules s
as ana helix and DNA@1–4#.

The idea of the possible relevance of the soliton mec
nism in energy transfer in biological systems has caused
of controversy concerning both the theoretical foundation
the concept and the explanation of the experimental d
within the framework of the so-called Davydov’s model. T
entire theory has been the subject of numerous critical re
aminations@7–12# and now it is evident that the origina
Davydov idea, i.e., the soliton creation on account of
single amide-I quantum self-trapping~ST!, cannot explain
intramolecular vibrational energy transfer in ana helix
@7–11#. On the other hand, since the values of the phys
parameters of ana helix satisfy conditions for the soliton
creation and existence on the basis of an excess electron
the whole concept may be applicable to the electron tran
in these substances. However, an idealized theoretical m
in which the only connection with the particular system a
the values of the parameters appearing in the model Ha
tonian, must be improved in order to account for the infl
ence of the perturbations which are always present in re
tic conditions. This assumes the examination of the soli
dynamics and stability as modified due to the thermal fl
tuations and various external fields.

This is the subject of the present paper, where we s
analyze the soliton dynamics under the influence of an ef
tive electric field which, in principle, may simulate the influ
ence of both endogenous and external electromagnetic~EM!
fields affecting the charge migration in ana-helix molecule.
The origins of these fields are very diverse and both DC
AC electric fields may appear in realistic systems. Thus,
example, they may arise as a consequence of the polar s
ture of thea helix and surrounding molecules, which, due
their thermal oscillations, should generate an EM field. C
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sequently, soliton created by an excess electron and l
distortion of thea-helix chain is affected by the effective EM
field coming of thea helix, surrounding molecules as well a
various external fields. Here, we shall restrict ourselves
the examination of the impact of DC fields, however, o
analysis may be relevant even for solitons driven by A
fields if the period of their oscillations exceeds a solito
lifetime. Such a situation may appear in the realistic syste
since a solitons lifetime at biologically relevant temperatu
is estimated to vary up to 10210 s @8,14#, while the bioelec-
tromagnetic fields span the frequencies from the sub-H
region up to a few gigahertz@15,16#. If EW eff denotes the vec-
tor of the effective electric field, then its influence on ele
tron on thenth site of the molecular chain may be describ
in terms of scalar potentialV52erŴ•EW eff where rŴ
5RW 0(nnBn

†Bn denotes the position operator of the exce
electron in the chain. Consequently, the model Hamiltoni
disregarding the term containing the electron energy on
nth site, irrelevant in the present context, now reads

H52J(
n

Bn
†~Bn111Bn21!1

1

AN
(
q,n

FqeiqnR0Bn
†Bn

3~aq1a2q
† !1(

q
\vqaq

†aq2eER0(
n

nBn
†Bn . ~1!

Here,E denotes the component of the effective electric fie
directed along thea helix, while, as usual, the operator
Bn

1(Bn) describe the presence~absence! of the electron on
nth peptide group~PG!, aq

1 andaq are the acoustic phono
creations and annihilation operators. The meaning of the
maining parameters are:J, is the intersite dipole-dipole trans
fer integral,vq5vB sinuqR0/2u is the phonon frequency~vB

52Ak/M is the phonon bandwidth, whilek and M denote
the spring constant and mass of the PG, respectively!, Fq

52ixA\/2Mvq sinqR0 denotes the electron-phonon co
pling parameter,x is its strength,R0 denotes lattice spacing
and finally,N@1 is the number of the PG.
©2002 The American Physical Society11-1
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Since the system parameters fora helix satisfy the adia-
baticity condition (B;2J/\vB@1), soliton dynamics may
be described within the time-dependent variational met
assuming the separability of the electron and phonon deg
of freedom~so calledD2 ansatz!, which in the final instance
results with the known set of equations slightly modified d
to the presence of the electric field

i\ḃ~x, t !1JR0
2bxx~x, t !2

1

AN
(

q
Fqeiqx@aq~ t !

1a2q* ~ t !#b~x, t !52eExb~x, t !, ~2!

i\ȧq~ t !5\vqaq~ t !1
1

AN
E

2`

` dx

R0
F2qe2 iqxub~x,t !u2,

~3!

for the envelope wave functionb(x, t) and phonon coheren
amplitudesaq(t). The equation for phonon amplitudes ma
be easily integrated in the case of coherent motion of e
tron and surrounding lattice distortion, which assumes t
ub(x, t)u25ub(x2vt)u2. This implies the trivial time depen
dence (;e2 iqvt) of the second term on the right-hand side
Eq. ~3!, whose general solution reads,aq(t)5aq(0)e2 ivqt

1aq
s(t), where the first term denotes the homogenous s

tion of Eq.~3! and corresponds to free phonons, whileaq
s(t)

is the soliton part of the lattice distortion, given as

aq
s~ t !52

1

AN

F2q

\~vq2qv !
E

2`

` dx

R0
e2 iqxub~x,t !u2

[2
1

AN

F2qe2 iqvt

\~vq2qv !
E

2`

` dz

R0
e2 iqzub~z!u2;

z5x2vt. ~4!

Substituting the above general solution of the equation
motion for phonon amplitudes into Eq.~2!, we obtain the
perturbed nonlinear Schro¨dinger equation~NSE!

i\ḃ~x, t !1JR0
2bxx~x, t !1

4EB

12S v
cD 2 ub~x, t !u2b~x, t !

52eExb~x, t !1 f ~x, t !b~x, t !. ~5!

Here, EB51/NSquFqu2/\vq represents the small polaro
binding energy. The only difference in respect to the us
procedure@3,6# is the accounting of the general solution f
the phonon amplitudes consisting of the particular~so-called
soliton-performed! solution and the homogeneous on
which represents the influence of the free phonons. The
term on the right-hand side of Eq.~5! comes from the effec-
tive electric field, while the term containingf (x, t) repre-
sents the influence of the free phonons. The explicit form
f (x, t) depends on the nature of the external perturbation
has the simple harmonic formf (x, t)5A sin(vt2kx) in the
case of the soliton interaction with the monochroma
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acoustic wave, or f (x, t)51/ANSqFqeiqxaq(0)e2 ivqt

1c.c., in the case of interaction with the phonon wa
packet. For the initial condition, corresponding to the latt
in thermal equilibriumf (x, t) represents a random force d
termined by@13,14#

^ f ~x, t !&50,

^ f ~x, t ! f ~x8, t8!&5kBT EBR0(
6

d@x2x86c~ t2t8!#.

~6!

Here,^ . . . & denotes the averaging over the equilibrium ph
non ensemble in the classical limit where the amplitudesaq
correspond to the classical limit of the phonon operatorsaq .

In the absence of perturbation, Eq.~5! has the one-soliton
solution b(x, t)5Am/2ei (ksx2vt) cosh21(m/R0)(x2j), where
ks5\v/2JR0

2 represents soliton quasimomentum,m
5EB /J(12v2/c2) denotes the so-called soliton parame
having the meaning of its inverse width measured in units
lattice spacing. Finally,j5x01vt denotes the soliton center
of-mass coordinate. The above solution describes the
ticlelike entity slowly propagating along the chain with th
velocity ~v! far less than the speed of sound (c)(v!c) and
carrying the energyEs5m* v2/2 and momentum Ps
5m* v. Here, the soliton effective mass (m* ) may be ex-
pressed in terms of the electron-phonon coupling cons
S;EB /\vB and electron effective band massm5\2/2JR0

2

as follows@10#, m* 5m(113p2S2/2). Due to the presence
of perturbing random force, Eq.~5! is a nonintegrable one
and soliton undergoes nontrivial dynamics manifes
through the evolution of its parameters. In what follows, w
shall consider the processes in the lowest order of the pe
bation when the radiative decay of the soliton amplitude m
be neglected and soliton dynamics are governed by the
lution of their momentum and center-of-mass coordinate.
that purpose, it is sufficient to consider the time evoluti
~balance! equation for the soliton~polaron! total momentum,
which is the sum of the electron part and that of the latt
distortion accompanying it, Ps5Pe1Pdef, Pdef

5\Sqquaq
s(t)u2. Within the framework of the present pape

the balance equation for polaron momentum results with
following system of stochastic differential equations:

j̇~ t !5v; v̇5
eE

m*
1F~j, t !, ~7!

where F(j,t)51/m* *dx/R0f (x,t)]/]xub(x,t)u2 represents
an effective random ‘‘force.’’ The above system follows d
rectly from the set of evolution Eqs.~2! and ~3! after the
separation of the fluctuation part@aq(0)e2 ivqt# from the co-
herent~soliton! part of phonon amplitude. This result shou
be understood in the way that although the fluctuatio
couple directly only to the electronic part, they influence t
polaron dynamics as whole. An analogous situation was c
sidered by Davydov~Ref. @3#! who examined the case wher
external forces affected directly the phonon subsystem
the final result was the change of the total soliton mom
tum.
1-2
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Up until now, no further approximations have been
volved and the above Eqs are exact, provided that the a
batic criterion is satisfied. Now we assume that the pertur
tion is weak so that one may take the usual solitonl
solution for b(x, t) but the time dependence of the solito
parametersv5v(t) and j5j(t) must be accounted for in
further calculations. Thus, substitutingub(x, t)u2[ub@x
2j(t)#u2, we found the following correlators determinin
the statistical properties of the effective random fie
^F(j,t)&50 and

^F~j,t !F~j8,t8!&

5
kBT EBR0

m* 2c2 (
6

E dx

R0
E dx8

R0
ub~x, t !u2ub~x8, t8!u2

3
]2

]t ]t8
d@x2x86c~ t2t8!#. ~8!

Our basic assumption is that the soliton is slow (c@v) and
that its shape is practically unaffected by the perturbatio
That implies thatub(x, t)u2[ub@x2j(t)#u2 is strongly local-
ized around the pointx5j(t), which justifies the following
approximation:

^F~j, t !F~j8, t8!&'
kBT EBR0

m* 2c3 (
6

E dx

R0
E dx8

R0

3ub@x2j~ t !#u2ub@x82j~ t8!#u2

3
]2

]t ]t8
dFj~ t !2j~ t8!

c
6~ t2t8!G .

~9!

For slow solitons, the term@j(t)2j(t8)#/c;v/c(t2t8) is
much smaller then the quantityt2t8, and may be neglected
Thus, the above correlator may be successfully approxim
with

^F~j, t !F~j8, t8!&5
kBT EBR0

m* 2c3

]2

]t ]t8
d~ t2t8!. ~10!

Equation ~7! may be integrated once and attains the we
known form of thed-correlated random process

j̇~ t !5v01
eEt

m*
1R~ t !;

^R~ t !R~ t8!&5
kBT EBR0

m* 2c3 d~ t2t8!, ~11!

describing, in the absence of a driving field, the known p
nomenon: particle diffusion in the field of random velociti
@17#. This problem was examined by Flytzanis, Ivic, a
Malomed @13# who derived the Fokker-Planck equatio
~FPE! for the distribution function of the soliton positio
P(j,t)
02191
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]P~j, t !

]t
5D

]2P~j, t !

]j2 , ~12!

whereD5kBT EBR0/2m* 2c3 represents the diffusion coef
ficient. The solution of the above equation is well know
@13,17# and given by

P~j, t !5
R0

A4pDt
expS 2

j2

4Dt D . ~13!

According to the general theory of stochastic processes@17#,
the term coming out of the driving field modifies the FPE
follows:

]P~j,t !

]t
52S v01

eEt

m* D ]P~j, t !

]j
1D

]2P~j, t !

]j2 . ~14!

It can be solved easily by virtue of the simple changes
variables: h5j2j02v0t2eE/2m* t2 and t5t8, which
brings it in the form of Eq.~12!. Here,j0 andv0 represent
the soliton center-of-mass initial position and initial velocit
respectively. Thus, using its solution and rewriting it in term
of original variables, we finally have

P~j, t !5
R0

A4pDt
expS 2

Fj2j02v0t2
eE

2m*
t2G2

4Dt
D .

~15!

With the help of the last equation, one can examine statist
properties of soliton. For that purpose, we shall follow t
procedure proposed in@18,19# and we shall calculate the
mean intensity of the wave I (x, t)[^ub(x, t)u2&
5*2`

` dj/R0 P(j, t)ub@x2j(t)#u2, soliton mean center-of-
mass coordinatêj&5*2`

` dj/R0 j P(j, t), and finally the
mean soliton widthDx5As where s5^x2&2^x&2. Here,
^xp&5*2`

` dx/R0*2`
` dj/R0xpub@x2j(t)#u2 P(j, t). In such

a way after some manipulations, we arrive at

I ~x, t ![^ub~x, t !u2&5
R0

A4pDt
E

2`

` dj

R0
exp

3F2
~j2^j&!2

4Dt G ub@x2j~ t !#u2, ~16!

^j~ t !&5j01v0t1
eEt2

2m*
, ~17!

Dx5A~Dx0!212Dt. ~18!

Here,Dx0;R0 /m denotes the soliton width at zero temper
ture. That is, the random lattice fluctuation and electric-fi
result in the mean value of the wave field, which attains
form of a Gaussian wave packet, whose center-of-mass
sition, in the mean, is that of classically charged partic
affected by the constant electric field. The width of such
pulse increases, as can be seen from Eq.~18!, while at the
same time, its magnitude decreases. In order to estimate
1-3
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FIG. 1. Relative wave inten-
sity f (t) versus dimensionless
time t
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rate of this damping, one should calculateI (x, t), at least
approximately. For that purpose, we substitute an exp
expression for the soliton envelope function in Eq.~16! and
after some straightforward calculation, we obtain

I ~x, t !5ub~x2^j&!u2
R0

A4pDt
E

2`

` dy

R0

3

expS 2
y2

4Dt D
cosh2

my

R0
F12tanh

m~x2^j&!

R0
tanh

my

R0
G2

~19!

At this stage, further calculations may be highly simp
fied if we transit into the moving reference frame in whi
x5^j& and whereub@x5^j(t)&#u2[m/2, so that the wave
intensity attains the simple form

I ~x5^j&,t !5
mR0

2A4pDt
E

2`

` dy

R0

expS 2
y2

4Dt D
cosh2

my

R0

. ~20!

It obviously decays in time, which is determined by the
tegral in the above expression. Unfortunately, the des
integral cannot be found exactly in the closed for
However, its numerical integration is relatively simp
and in Fig. 1, we have plotted functionf (t)
52/Ap*0

`dz e2z2
cosh22(A4tz), which represents relative

wave intensityI (x5^j&,t)/I (x5^j&,t50). Here, t repre-
sents dimensionless time measured in units ofR0

2/Dm2, i.e.,
t5R0

2/Dm2t.
02191
it
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As one can see, the magnitude of the wave intensity r
idly decreases for short times (t,1) so that fort;1, it
approaches the half of its initial value, so we have estima
its half lifetime as

t1/2;
~11S2!2

S3T
310211 s. ~21!

This last result does not depend on the electric fie
which influences soliton translational motion only~E accel-
erates soliton!, but does not affect its stability. This is th
consequence of the exact solvability of NSE containing
driving term ;xE exclusively @i.e., if f (x, t)50# which,
with the help of a simple phase transformation@18#,

b(x, t)5f(X, t)eix\j̇/2JR0
2
, X5x2j(t), and providing that

j(t) satisfiesj̈5eE/m* , may be reduced onto the standa
form for envelopef(X, t).

Our analysis shows that the soliton under the influence
the random lattice fluctuations and electric fields in,a helix
undergoes Brownian motion, in which its center-of-mass
sition, on average, evolves in time similarly to the classi
particle affected by the constant driving force. In additio
fluctuations result in the mean value of the wave field tak
the form of a Gaussian wave packet whose width increase
time, while at the same time, its magnitude diminishes. T
characteristic time scale of the dispersion and decay of
wave packet is given by the last equation, which points to
significant stability of soliton~large polaron! states in the
electron-phonon systems provided that the large polaron
istence criterion~adiabaticity-B@1 and weak coupling limit-
S!1 @7,10,11#! is satisfied. In such a way, our results su
port the possible relevance of the solitonic mechanism in
charge~precisely, the electron-charge! transfer in biological
macromolecules~a helix!, since the demanded criterion
satisfied in these substances.
1-4
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Let us now point out that in contrast to Ref.@14#, where
soliton radiation decay was considered, here we deal with
radiationless case. This concerns both soliton gradual de
into the delocalized~‘‘band’’ ! states and EM radiation, whic
may be generated due to its acceleration. The latter case
the subject of a recent study@20# where it was shown that th
soliton motion along a polypeptide chain is affected by
periodic structure, which modulates soliton velocity and
d

s

in

02191
e
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-

duces EM radiation. Comparing the present paper with
sults obtained in Ref.@14#, it follows that soliton radiation
decay takes place on the comparably larger time scale (t rad
;(TS5)21310210 s) and therefore is negligible in respe
to the above-estimated one.
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