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Finite-temperature large acoustic polaron dynamics in quasi-one-dimensional molecular crystals
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We report the results of theoretical examinations of large polaron motion in one-dimer@iDhatolecular
crystals under the influence of thermal fluctuations of the host lattice and constant electric field. Such a
situation may arise in biological macromolecules such a& &elix where chargéelectron transfer may be
achieved by a polarofsoliton) mechanism. In that case, the electric field represents the effective endogenous
electric field which is always present in realistic conditions. We derive and solve the Fokker-Planck equation
for the distribution function of the soliton’s center-of-mass position. It is shown that the soliton effectively
exhibits a random walk. Moreover, in order to examine statistical properties of the soliton wave function, we
calculate the mean value of the soliton probability dengitg(x,t)|?) and we find that, for sufficiently large
times, thermal fluctuations destruct the soliton, which transforms into the Gaussian packet. These results were
used in order to estimate the relevance of the soliton model of charge transfer in polypeptide chains.
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There has been an extensive intefdst14] in the study of sequently, soliton created by an excess electron and local
large polaron (soliton) properties in the quasi-one- distortion of thea-helix chain is affected by the effective EM
dimensional molecular chains in recent years. It arises due tield coming of thex helix, surrounding molecules as well as
the assumed key role of polarons and solitons in longvarious external fields. Here, we shall restrict ourselves to
distance chargeelectron, etg.and intramolecular vibrational the examination of the impact of DC fields, however, our
energy(amide-I quantatransfer along the conducting poly- analysis may be relevant even for solitons driven by AC
mers and organic salts, and biological macromolecules sudiglds if the period of their oscillations exceeds a solitons
as ana helix and DNA[1—4]. lifetime. Such a situation may appear in the realistic systems
The idea of the possible relevance of the soliton mechasince a solitons lifetime at biologically relevant temperatures
nism in energy transfer in biological systems has caused a |¢% estimated to vary up to 16° s[8,14], while the bioelec-
of controversy concerning both the theoretical foundation ofromagnetic fields span the frequencies from the sub-Hertz
the concept and the explanation of the experimental dateegion up to a few gigaher{d5,16. If E.; denotes the vec-
within the framework of the so-called Davydov’s model. Thetor of the effective electric field, then its influence on elec-
entire theory has been the subject of numerous critical reexron on thenth site of the molecular chain may be described
aminations[7—12 and now it is evident that the original jn terms of scalar potentialV=—ef-E.s where

Davydov idea, i.e., the soliton creation on account of the

ingle amide-1 quantum self-trappinéST), cannot explain =I§02nn BEBn denotes the position operator of the excess
sing ide-1 quantum self-trappingST), XpIaIN - gjactron in the chain. Consequently, the model Hamiltonian,

intramolecular vibrational energy transfer in an helix . . L
B . . _disregarding the term containing the electron energy on the
[7-11]. On the other hand, since the values of the physmaﬂth site, irrelevant in the present context, now reads

parameters of am helix satisfy conditions for the soliton
creation and existence on the basis of an excess electron ST,

the whole concept may be applicable to the electron transfer 1 -

in these substances. However, an idealized theoretical model ™= _J; BA(Bny1+By-1) + \/_NqZ’\ qulanoB;Bn

in which the only connection with the particular system are '

the values of the parameters appearing in the model Hamil- + + +

tonian, must be improved in order to account for the influ- ><(aq+a,q)+§q: hwqaqaq—eER,En: nByBy. (1)
ence of the perturbations which are always present in realis-

tic conditions. This assumes the examination of the solito

dynamics and stability as modified due to the thermal fluc di 4 al hew hell hil [ th
tuations and various external fields. irected along thex helix, while, as usual, the operators

This is the subject of the present paper, where we shafn (Bn) describe the pre+senc(absenc)aof the electron on
analyze the soliton dynamics under the influence of an effecith peptide grougPG), a; anda, are the acoustic phonon
tive electric field which, in principle, may simulate the influ- creations and annihilation operators. The meaning of the re-
ence of both endogenous and external electromag(hi maining parameters ard, is the intersite dipole-dipole trans-
fields affecting the charge migration in arhelix molecule.  fer integral,w,= wg sinjqRy2| is the phonon frequenciwg
The origins of these fields are very diverse and both DC and=2\«/M is the phonon bandwidth, while andM denote
AC electric fields may appear in realistic systems. Thus, fothe spring constant and mass of the PG, respeclively
example, they may arise as a consequence of the polar strue-2i x Vi/2M wy SingR, denotes the electron-phonon cou-
ture of thea helix and surrounding molecules, which, due to pling parametery is its strengthR, denotes lattice spacing,
their thermal oscillations, should generate an EM field. Conand finally,N>1 is the number of the PG.

r_]—|ere,E denotes the component of the effective electric field
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Since the system parameters fehelix satisfy the adia- acoustic wave, or f(x, t)zl/mgqpqeiqxaq(o)eﬂwqt
baticity condition B~2J/%wg>1), soliton dynamics may +c.c., in the case of interaction with the phonon wave
be described within the time-dependent variational methoghacket. For the initial condition, corresponding to the lattice

assuming the separability of the electron and phonon degres thermal equilibriumf (x, t) represents a random force de-
of freedom(so calledD, ansatz, which in the final instance, termined by[13,14]

results with the known set of equations slightly modified due

to the presence of the electric field (f(x,1))=0,
iB(X, 1)+ IR2Byu(X, ) — \/%2 F o€ P aq(t) (Fx, HF (X', 1)) =kgT EBROZ S[x—x +c(t—t"].
q =
(6)
+a¥ (D)]B(x, 1) =—eExB(x, 1), (2

Here,( .. .) denotes the averaging over the equilibrium pho-
1 (= dx _ non ensemble in the classical limit where the amplitudgs
ifag(t)=fogag(t)+ —f S F_qe ' ™B(x,1)%, correspond to the classical limit of the phonon operatgrs
N J-=Ro In the absence of perturbation, E§) has the one-soliton
() solution B(x, t) = Vul2e' k@D cosh(w/Ry)(x—§&), where

- 2 ; :
for the envelope wave functiofi(x, t) and phonon coherent IiSE ﬁ/ljjlzl‘mo 2 rzeprdesents Eollton Ithuoflmn}omentumﬂ
amplitudesaq(t). The equation for phonon amplitudes may ~ =8 (1—v7/c?) denotes the so-called soliton parameter

be easily integrated in the case of coherent motion of e|ecjjaving the meaning of its inverse width measured in units of

tron and surrounding lattice distortion, which assumes thal2ttice spacing. Finallg=x,-+uvt denotes the soliton center-

|,8(x,t)|2=|_/8(x—vt)|2. This implies the trivial time depen- of-mass coordinate. The above solution describes the par-

dence (e '%Y) of the second term on the right-hand side OfticIeIiI_<e entity slowly propagating along the chain with the
Eq. (3), whose general solution readsq(t):aq(o)efiwqt velocity (v) far less than the speed of soung) (v<c) and

; —m*.,2
+a§(t), where the first term denotes the homogenous solucdYIng the energyE,=m"v*/2 and momentum Py

. ) =m*v. Here, the soliton effective massnt) may be ex-
fuon of Eq_.(3) and Correspor!ds to_ free. phon.ons, Wm@t) pressed in terms of the electron-phonon coupling constant
is the soliton part of the lattice distortion, given as

S~Eg/hwg and electron effective band mass= ﬁ2/2JR§
as follows[10], m* =m(1+ 372S%/2). Due to the presence

ag(t)=— iﬁf %e_iqx|,3(x,t)|2 of perturbing random force, Eq5) is a nonintegrable one
4 YN Ai(wq—=qu) J-=Ro and soliton undergoes nontrivial dynamics manifested
. through the evolution of its parameters. In what follows, we
_ i F—qe_'qvt jw d_Ze_iqz| 2% shall consider the processes in the lowest order of the pertur-
N \/N fi(og—qu) J-=Rg B ’ bation when the radiative decay of the soliton amplitude may

be neglected and soliton dynamics are governed by the evo-
z=x—vot. (4) lution of their momentum and center-of-mass coordinate. For
that purpose, it is sufficient to consider the time evolution
Substituting the above general solution of the equation ofbalance equation for the solitoripolaron) total momentum,
motion for phonon amplitudes into E¢2), we obtain the which is the sum of the electron part and that of the lattice
perturbed nonlinear Schiimger equatior{NSE) distortion  accompanying it, Ps=Po+Pger,  Pyer
=h2qq|a§(t)|2. Within the framework of the present paper,

. 4E . .
. > B 2 the balance equation for polaron momentum results with the
1A B(X, 1)+ IRBx(X, 1)+ v)? B, DI%BX. 1) following system of stochastic differential equations:
1- < | .
——eExXB(x, )+ (X, )B(x, 1). (5) fO=v; v=ge ALY, @

Here, Eg=1/N3 |Fy|%/fiw, represents the small polaron where F(&,t)=1/m* [dx/Ryf(x,t)d/dx|B(x,t)|? represents
binding energy. The only difference in respect to the usuahn effective random “force.” The above system follows di-
procedurd 3,6] is the accounting of the general solution for rectly from the set of evolution Eqg2) and (3) after the

the phonon amplitudes consisting of the particitar-called  separation of the fluctuation pdit4(0)e™'“a"] from the co-
soliton-performetl solution and the homogeneous one, herent(soliton part of phonon amplitude. This result should
which represents the influence of the free phonons. The firdie understood in the way that although the fluctuations
term on the right-hand side of E¢p) comes from the effec- couple directly only to the electronic part, they influence the
tive electric field, while the term containinf(x, t) repre-  polaron dynamics as whole. An analogous situation was con-
sents the influence of the free phonons. The explicit form okidered by DavydovyRef.[3]) who examined the case where
f(x, t) depends on the nature of the external perturbation andxternal forces affected directly the phonon subsystem but
has the simple harmonic forr(x, t)=Asin(wt—kx) in the  the final result was the change of the total soliton momen-
case of the soliton interaction with the monochromatictum.
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Up until now, no further approximations have been in-
volved and the above Eqgs are exact, provided that the adia-
batic criterion is satisfied. Now we assume that the perturba-
tion is weak so that one may take the usual solitonlikeyhere D=kgT EgRy/2m*2c® represents the diffusion coef-

solution for B(x, t) but the time dependence of the soliton ficient. The solution of the above equation is well known
parametery =v(t) and £=£(t) must be accounted for in [13,17 and given by

JP(E ) PP D)

at P (12

further calculations. Thus, substituting3(x, t)|?=|B[x
—&(1)]|?, we found the following correlators determining

the statistical properties of the effective random field:

(F(&,1))=0 and
(FIEDF(E L))

kT EgRy dx [ dx’ o
:WZ fR—OfR—O|ﬂ(X,t)|2|B(X )2
32
X

2 XX Ee(t=t)]. (8)

Our basic assumption is that the soliton is slov#@) and

2

4Dt

Ro F(
ex
J4mDt

According to the general theory of stochastic procefs€ék
the term coming out of the driving field modifies the FPE as
eEt) JIP(&, 1)

follows:
(”0 m* | ok

It can be solved easily by virtue of the simple changes of
variables: 7= ¢—&—vot—eE/2m*t? and t=t’, which
brings it in the form of Eq(12). Here, &, andv represent

P& t)= . (13

PPP(E, 1)
92

IPEYL)
e

. (19

that its shape is practically unaffected by the perturbationst.he soliton center-of-mass initial position and initial velocity,

That implies that 8(x, t)|2=| B[ x— &(t)]|? is strongly local-
ized around the point= £(t), which justifies the following
approximation:

kT EgRy
(FEOAE VN~ —z3

dx [ dx’
> el ®
X|BIx— &2 BIX" — &(t)]|?
2 _ ’
J 5{5(0 f(t)i(t_t,)}
(9)

at ot’ c
For slow solitons, the termé&(t) — &(t')]/c~v/c(t—t') is
much smaller then the quantity-t’, and may be neglected.

respectively. Thus, using its solution and rewriting it in terms
of original variables, we finally have

2

eE 2

2m*

§—&o—vot—
4Dt

R
P(f, t): \/ﬁexp -
(15

With the help of the last equation, one can examine statistical
properties of soliton. For that purpose, we shall follow the
procedure proposed ifil8,19 and we shall calculate the
mean intensity of the wave I(x,t)=(|B(x,1)|?)
=[”_dE&IRy P(&,1)| B[x— &(1) ]|, soliton mean center-of-
mass coordinatéé)= [~ _dé/Ry € P(&,t), and finally the
mean soliton widthAx= /o where o-=(x?)—(x)2. Here,

Thus, the above correlator may be successfully approximated®) =/~ =dX/Rof *.dé/Rox®| Blx— £(1)]|* P(£, 1). In such

with a way after some manipulations, we arrive at
+ oy XeT EsRo : (% D=(| B, D]2) = —2 Fgex
(FENFE )=~ o o A=), (10) X O=(Bx === | R, &P
. , : (£—(8))?
Equation(7) may be integrated once and attains the well- x| — =2 | Bx— &(1)]|2 (16)
it ||Blx— &I,
known form of thes-correlated random process t
: eEt eEf
5(t):v°+F+R(t); (&(1))=¢€otvot+ > (17)
Ax=/(Axo)?+2Dt. (18

(ROOR()) =~z 2c3 o=t ) Here,Axo~Ry/u denotes the soliton width at zero tempera-
ture. That is, the random lattice fluctuation and electric-field
describing, in the absence of a driving field, the known pheresult in the mean value of the wave field, which attains the
nomenon: particle diffusion in the field of random velocities form of a Gaussian wave packet, whose center-of-mass po-
[17]. This problem was examined by Flytzanis, lvic, andsition, in the mean, is that of classically charged particles
Malomed [13] who derived the Fokker-Planck equation affected by the constant electric field. The width of such a
(FPB for the distribution function of the soliton position pulse increases, as can be seen from (£8), while at the

P(&,1) same time, its magnitude decreases. In order to estimate the
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FIG. 1. Relative wave inten-
sity f(7) versus dimensionless
time 7

rate of this damping, one should calculdig, t), at least

As one can see, the magnitude of the wave intensity rap-

approximately. For that purpose, we substitute an expliciidly decreases for short times<€1) so that forr~1, it

expression for the soliton envelope function in Ef6) and
after some straightforward calculation, we obtain

L(x, t)=|B(x—(&))] \/mijo

_V_2>

« 4Dt
X — 2
cosﬁiy { 1—tanh'u(—<§>)tanh'u—y}
Ro Ro Ro
(19

At this stage, further calculations may be highly simpli-
fied if we transit into the moving reference frame in which
x=(&) and where|B[x=(&(t))]|?’=pu/2, so that the wave
intensity attains the simple form

y2
exp — o =7
MRy (= dy p( 4Dt)
I(x=() )= ——=| o5 ——— (20
=D 2J4mDt)—=Ro o MY (20
Ro

It obviously decays in time, which is determined by the in-

tegral in the above expression. Unfortunately, the desireg

integral cannot be found exactly in the closed form.
However, its numerical integration is relatively simple
and in Fig. 1, we have plotted functionf(r)
—2/\mfedz e @ cosh¥\/4rz), which represents relative
wave intensityl (x=(&),t)/1(x=(£),t=0). Here, 7 repre-
sents dimensionless time measured in unitRgID 4?2, i.e.,
_p2 2

t=Rg/Du“r.

approaches the half of its initial value, so we have estimated
its half lifetime as

(1+5%)?2
ST

typ x10 1 s, (21)

This last result does not depend on the electric field,
which influences soliton translational motion orify accel-
erates solito)) but does not affect its stability. This is the
consequence of the exact solvability of NSE containing the
driving term ~XxE exclusively [i.e., if f(x, t)=0] which,
with the help of a simple phase transformati¢tg],

B(x, 1) = (X, )X ¥DR X =x—£(t), and providing that
£(t) satisfiesé=eE/m*, may be reduced onto the standard
form for envelopeg(X, t).

Our analysis shows that the soliton under the influence of
the random lattice fluctuations and electric fieldsdnhelix
undergoes Brownian motion, in which its center-of-mass po-
sition, on average, evolves in time similarly to the classical
particle affected by the constant driving force. In addition,
fluctuations result in the mean value of the wave field taking
the form of a Gaussian wave packet whose width increases in
time, while at the same time, its magnitude diminishes. The
characteristic time scale of the dispersion and decay of this
wave packet is given by the last equation, which points to the
ignificant stability of soliton(large polaron states in the
electron-phonon systems provided that the large polaron ex-
istence criterior{adiabaticityB>1 and weak coupling limit-
S<1 [7,10,11) is satisfied. In such a way, our results sup-
port the possible relevance of the solitonic mechanism in the
charge(precisely, the electron-charg&ansfer in biological
macromoleculega helix), since the demanded criterion is
satisfied in these substances.
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Let us now point out that in contrast to R¢L4], where  duces EM radiation. Comparing the present paper with re-
soliton radiation decay was considered, here we deal with theults obtained in Refl14], it follows that soliton radiation
radiationless case. This concerns both soliton gradual dec#lecay takes place on the comparably larger time scalg (
into the delocalized*band”) states and EM radiation, which ~(TS’) X 107*°s) and therefore is negligible in respect
may be generated due to its acceleration. The latter case wi the above-estimated one.
the subject of a recent studi0] where it was shown thatthe  \we would like to acknowledge useful conversations with

soliton motion along a polypeptide chain is affected by itspr. p. Kapor. This work was supported by the Serbian Min-
periodic structure, which modulates soliton velocity and in-istry of Science and Technology under Contract No. 01E15.
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